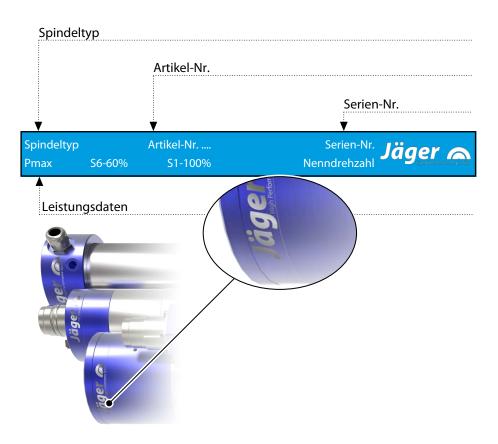
# **Handbuch**






Z100-M618.03 S5

Schnellfrequenzspindel

**Manueller Kegelwechsel** 



# Kennzeichnung der SF-Spindel



Da wir unsere SF-Spindeln stets auf dem neusten Stand der technischen Entwicklung halten, behalten wir uns technische Änderungen und Abweichungen gegenüber der im Handbuch beschriebenen Ausführung vor.



Die Texte dieses Handbuchs wurden mit größter Sorgfalt erarbeitet. Die Nakanishi Jaeger GmbH kann jedoch für eventuell verbliebene fehlerhafte Angaben und deren Folgen weder eine juristische Verantwortung noch irgendeine Haftung übernehmen.

Übersetzungen und Vervielfältigungen - auch nur auszugsweise - sind ohne ausdrückliche schriftliche Genehmigung der **Nakanishi Jaeger GmbH** untersagt.



# **Inhaltsverzeichnis:**

# Original-Handbuch

| 1   | Vorabinformation4                     |    |  |  |
|-----|---------------------------------------|----|--|--|
| 1.1 | Zweck des Handbuches                  |    |  |  |
| 1.2 | Erläuterung der Symbole               | 4  |  |  |
| 2   | Transport und Verpackung              | 5  |  |  |
| 2.1 | Lieferumfang der SF-Spindel           | 5  |  |  |
|     | 2.1.1 Optionales Zubehör              | 5  |  |  |
|     | 2.1.2 Mitgelieferte Dokumentation     | 5  |  |  |
| 2.2 | Verpackung der SF-Spindel             | 6  |  |  |
| 3   | Bestimmungsgemäße Verwendung          | 6  |  |  |
| 3.1 | Zulässige Bearbeitungsarten           | 6  |  |  |
| 3.2 | Zulässige Werkstoffe                  | 6  |  |  |
| 4   | Sicherheitshinweise                   | 7  |  |  |
| 4.1 | Sicherheitsbewusstes Arbeiten         | 8  |  |  |
| 4.2 | Stillsetzen der SF Spindel            | 9  |  |  |
| 4.3 | Installation und Wartung              | 9  |  |  |
| 4.4 | Umbau und Reparatur                   | 9  |  |  |
| 4.5 | Unzulässige Betriebsweisen            | 9  |  |  |
| 5   | Technische Beschreibung1              | 0  |  |  |
| 5.1 | Anschlüsse der SF-Spindel 1           |    |  |  |
| 5.2 | Elektrischer Anschluss 1              | 0  |  |  |
| 5.3 | Kühlung 1                             | 1  |  |  |
| 5.4 | Sperrluft 1                           | 1  |  |  |
| 6   | Technische Daten1                     |    |  |  |
| 6.1 | Abmessungen 1                         | 3  |  |  |
| 6.2 | Motordaten 1                          | 4  |  |  |
|     | 6.2.1 Leistungsdiagramm 1             | 5  |  |  |
|     | 6.2.2 Ersatzschaltbilddaten 1         | 5  |  |  |
| 6.3 | Schaltplan 1                          | 8  |  |  |
| 6.4 | Motorschutz Pt1000 1                  |    |  |  |
| 6.5 | Motorschutz PTC 150° C 2              |    |  |  |
| 6.6 | Drehzahlgeber (Digitale Feldplatte) 2 |    |  |  |
| 6.7 | Luftschallemissionen                  | 2  |  |  |
| 7   | Betriebsort2                          | 3  |  |  |
| 8   | Installation2                         | 4  |  |  |
| 8.1 | SF-Spindel installieren               |    |  |  |
| 8.2 | Durchmesser Medienzuleitung 25        |    |  |  |
| 8.3 | Kühlwasser                            |    |  |  |
|     | 8.3.1 Qualität des Kühlwassers        | 25 |  |  |

| 15         | Einbauerklärung                         | 39   |
|------------|-----------------------------------------|------|
| 14.2       | Betriebsstörungen                       | . 37 |
| 14.1       | Servicepartner                          | . 36 |
| 14         | Service & Reparatur                     | 36   |
| 13.1       | Entsorgung und Umweltschutz             | . 35 |
| 13         | Demontage                               |      |
| 12.6       | Maximale Lagerzeit                      | . 34 |
| 12.5       | Bei längerer Lagerung                   |      |
| 12.4       | Monatliche Wartung                      |      |
| 12.3       | Bei Lagerung                            |      |
| 40-        | 12.2.3 Bei jedem Spannmittelwechsel     |      |
|            | 12.2.2 Bei jedem Werkzeugwechsel        |      |
|            | 12.2.1 Vor Arbeitsbeginn                |      |
| 12.2       | Tägliche Reinigung                      |      |
| 12.1       | Kugellager                              |      |
| 12         | Wartung                                 |      |
| 11         | Werkzeuge zur HSC-Bearbeitung           | 32   |
| 10.2       |                                         |      |
| 10.1       | Rechtslauf und Linkslauf  Manueller HSK |      |
| 10         | Werkzeugwechsel                         |      |
|            |                                         |      |
| 9.3<br>9.4 | Inbetriebnahme nach Lagerung            |      |
| 9.2        | Täglicher StartStillstandsmeldung       |      |
| 9.1        | Einlaufschema                           |      |
| <b>9</b>   | Inbetriebnahme                          |      |
|            | 8.4.2 Sperrluft einstellen              |      |
|            | 8.4.1 Luftreinheitsklassen (ISO 8573-1) |      |
| 8.4        | Druckluft(SO 0573.1)                    |      |
|            | 8.3.2 Kühlung einstellen                |      |
|            |                                         |      |





#### 1 Vorabinformation

Die Schnellfrequenzspindel (SF-Spindel) ist ein hochwertiges Präzisionswerkzeug für die Hochgeschwindigkeitsbearbeitung.

#### 1.1 Zweck des Handbuches

Das Handbuch ist ein wichtiger Bestandteil der SF-Spindel.

- Bewahre das Handbuch sorgfältig auf.
- Stelle das Handbuch allen mit der SF-Spindel betrauten Personen zur Verfügung.
- Lies die gesamte mitgelieferte Dokumentation.
- ⇒ Lies vor der durchzuführenden Arbeit das zu dieser Arbeit gehörende Kapitel im Handbuch noch einmal sorgfältig durch.

# 1.2 Erläuterung der Symbole

Um Informationen schnell zuzuordnen, werden in diesem Handbuch visuelle Hilfen in Form von Symbolen und Textauszeichnungen verwendet.

Hinweise werden mit einem Signalwort und einem farbigen Rahmen gekennzeichnet:



#### **GEFAHR**

#### **Gefährliche Situation!**

Führt zu schweren Verletzungen oder zum Tod.

Maßnahme, um die Gefahr abzuwenden.



#### **WARNUNG**

#### **Gefährliche Situation!**

Kann zu schweren Verletzungen oder zum Tod führen.

► Maßnahme, um die Gefahr abzuwenden.



#### **ACHTUNG**

#### **Gefährliche Situation!**

Kann zu leichten bis mittelschweren Verletzungen führen.

Maßnahme, um die Gefahr abzuwenden.



#### **Hinweis**

Kann zu Sachschäden führen. Dieses Warnsymbol warnt nicht vor Personenschäden

#### **Tipp**

Tipp kennzeichnet nützliche Hinweise für den Benutzer.



#### 2 **Transport und Verpackung**

Vermeide beim Transport starke Erschütterungen oder Stöße, da diese die Kugellager der SF-Spindel beschädigen könnten.

⇒ Jede Beschädigung mindert die Genauigkeit der SF-Spindel.

# 2

|       | 3 3 1                                                                                                                                                                                                           |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Jede Beschädigung schränkt die Funktion der SF-Spindel ein.                                                                                                                                                     |
|       | ⇒ Jede Beschädigung verringert die Lebensdauer der SF-Spindel.                                                                                                                                                  |
| 2.1   | Lieferumfang der SF-Spindel                                                                                                                                                                                     |
|       | Nachfolgende Teile gehören zum Lieferumfang der SF-Spindel:                                                                                                                                                     |
|       | ☐ Schnellfrequenzspindel                                                                                                                                                                                        |
|       | ☐ Reinigungskegel aus Filz                                                                                                                                                                                      |
|       | ☐ Sechskant-Schraubendreher                                                                                                                                                                                     |
|       | ☐ Transportverpackung                                                                                                                                                                                           |
|       | Prüfe die Schnellfrequenzspindel bei Lieferung auf Vollständigkeit.                                                                                                                                             |
| 2.1.1 | Optionales Zubehör                                                                                                                                                                                              |
|       | Auf Wunsch lieferbar:                                                                                                                                                                                           |
|       | ☐ Spindelträger                                                                                                                                                                                                 |
|       | ☐ Frequenzumrichter                                                                                                                                                                                             |
|       | ☐ Kühlgerät                                                                                                                                                                                                     |
|       | ☐ Zangenfett                                                                                                                                                                                                    |
|       | ☐ Weiteres Zubehör auf Anfrage.                                                                                                                                                                                 |
|       | Nur zugelassenes Zubehör ist auf Betriebssicherheit und Funktion geprüft.                                                                                                                                       |
|       | Verwende kein anderes Zubehör, das kann zum Verlust jeglicher Gewähr-<br>leistungs- und Schadensersatzansprüche führen.                                                                                         |
|       | Falls der Spindelträger selbst gefertigt werden soll, kontaktiere unbedingt<br>vor Beginn der Fertigung die Nakanishi Jaeger GmbH und fordere das To-<br>leranz- und Fertigungsschema für den Spindelträger an. |
| 2.1.2 | Mitgelieferte Dokumentation                                                                                                                                                                                     |
|       | Nachfolgende aufgezählte Dekumente gehören zum Lieferumfang der CE                                                                                                                                              |

#### 2

Nachfolgende aufgezählte Dokumente gehören zum Lieferumfang der SF Spindel:

| Handbuch                                            |
|-----------------------------------------------------|
| Die Einbauerklärung ist Bestandteil des Handbuches. |
| Prüfprotokoll                                       |

⇒ Überprüfe bei Lieferung die Vollständigkeit der mitgelieferten Dokumente. Fordere bei Bedarf eine neue Kopie an.



#### 2.2 Verpackung der SF-Spindel



Alle Materialien der Transportverpackung können in einer entsprechenden Entsorgungsanlage recycelt werden

#### 3 Bestimmungsgemäße Verwendung

Die SF-Spindel ist im Sinne der Maschinenrichtlinie eine "unvollständige Maschine" und kann allein für sich genommen keine Funktion erfüllen. Die SF-Spindel kann nur zusammen mit einer Werkzeugmaschine und einem Frequenzumformer betrieben werden.

#### 3

| 3.1 | Zulässige Bearbeitungsarten                                                           |
|-----|---------------------------------------------------------------------------------------|
|     | Die SF-Spindel wurde nur für die nachfolgenden Bearbeitungsarten entwickelt.          |
|     | ☐ Fräsen                                                                              |
|     | ☐ Bohren                                                                              |
|     | ☐ Gravieren                                                                           |
|     | ☐ Schleifen                                                                           |
|     | Sind andere Bearbeitungsarten erforderlich, kontaktiere die Nakanishi<br>Jaeger GmbH. |
| 3.2 | Zulässige Werkstoffe                                                                  |
|     | Die SF-Spindel wurde nur für die nachfolgenden Werkstoffe entwickelt.                 |
|     | ☐ Metalle (wie Legierungen, Guss etc.)                                                |
|     | ☐ Sinterwerkstoffe                                                                    |
|     | ☐ Kunststoffe                                                                         |
|     | ☐ Holz                                                                                |
|     | ☐ Graphit                                                                             |
|     | ☐ Stein (wie Marmor etc.)                                                             |
|     | ☐ Papier und Kartonagen                                                               |
|     | ☐ Leiterplatten                                                                       |
|     | ☐ Glas und Keramik                                                                    |
|     | Sollen andere Werkstoffe bearbeitet werden, kontaktiere die Nakanishi<br>Jaeger GmbH. |

6 (40) Artikel-Nr. 10206008, Revision 00



#### 4 Sicherheitshinweise

Die Schnellfrequenzspindel wurde nach anerkannten Regeln der Technik gebaut und ist betriebssicher.

Von der SF-Spindel können aber Gefahren ausgehen, wenn sie:

- ☐ Von unausgebildetem Personal eingebaut wird.
- ☐ Unsachgemäß eingesetzt wird.
- ☐ Nicht bestimmungsgemäß eingesetzt wird.

Die Schnellfrequenzspindel darf nur von Fachpersonal eingebaut, in Betrieb genommen und gewartet werden.

**Definition:** Fachpersonal sind Personen, die mit Aufstellung, Montage, Inbetriebnahme und Betrieb des Produktes vertraut sind und über die ihrer Tätigkeit entsprechenden Qualifikationen verfügen. Zuständigkeit, Schulung und Überwachung des Personals müssen durch den Betreiber genau geregelt sein.



## **GEFAHR: Durch Explosion.**

SF-Spindeln sind für den Einsatz in explosionsgefährdeten Räumen nicht zugelassen. Ein Einsatz in diesen Räumen kann zu Explosionen führen.

▶ Verwende die SF-Spindel nicht in explosionsgefährdeten Umgebungen.



#### **GEFAHR: Durch weggeschleuderte Teile.**

Die SF-Spindel arbeitet mit hohen Drehzahlen und kann dadurch weggeschleudert werden.

▶ Betreibe die SF-Spindel nur, wenn sie in der Maschine oder in der Anlage fest eingebaut ist.



#### Hinweis: Grenzwerte einhalten.

▶ Beachte die in den technischen Daten angegebenen Grenzwerte.



#### Hinweis: Maschine berücksichtigen.

- Beachte das Handbuch der Maschine, in welche die SF-Spindel eingebaut wird.
- ▶ Berücksichtige alle vom Hersteller der Maschinen angegebenen Sicherheitshinweise.
- Stelle sicher, dass von der Maschine keine Gefahren (z. B. unkontrollierte Bewegungen) ausgehen. Installiere erst danach die SF-Spindel in der Maschine.



#### Hinweis. Nicht die SF-Spindel beschädigen.

- Jede Beschädigung mindert die Genauigkeit der SF-Spindel.
- ▶ Jede Beschädigung schränkt die Funktion der SF-Spindel ein.
- ▶ Jede Beschädigung verringert die Lebensdauer der SF-Spindel.



#### 4.1 Sicherheitsbewusstes Arbeiten

Beachte alle im Handbuch aufgeführten Sicherheitshinweise, die bestehenden nationalen Vorschriften zur Unfallverhütung (UVV) sowie die vorhandenen innerbetrieblichen Arbeits-, Betriebs- und Sicherheitsvorschriften.



#### **GEFAHR: Durch weggeschleuderte Teile.**

Nicht ordnungsgemäß eingespanntes Werkzeug wird, durch die bei der Bearbeitung entstehenden Fliehkräfte, weggeschleudert.

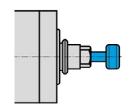
- Nutze die Spanntiefe des Spannsystems vollständig aus.
- ► Spanne das Werkzeug fest ein.



#### **GEFAHR: Durch weggeschleuderte Teile.**

Bei falscher Drehrichtung löst sich das Spannsystem und das Werkzeug wird weggeschleudert.

► Halte unbedingt die Drehrichtung der SF-Spindel ein.






#### WARNUNG: Verletzungsgefahr durch weggeschleuderte Teile.

Die SF-Spindel arbeitet mit hohen Drehzahlen, durch die Späne mit großer Wucht weggeschleudert werden.

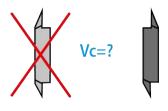
- Entferne auf keinen Fall die Schutzvorrichtungen der Maschine oder der Anlage.
- ► Arbeite immer mit Schutzbrille.



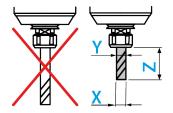
Musterabbildung: Schaft einsetzen

#### Hinweis: Funktion gewährleisten.

▶ Betreibe die SF Spindel nie ohne einen eingespannten Werkzeugschaft.


#### Ohne eingespannten Werkzeugschaft wird:

- ☐ Das Spannsystem durch die Fliehkräfte beschädigt.
- Das Spannsystem verstellt.
- ☐ Die Wuchtgüte der SF-Spindel beeinflusst.
- ☐ Die Lagerung beschädigt.
- Treffe je nach Art der Bearbeitung, des zu bearbeitenden Werkstoffes und des gewählten Werkzeuges geeignete Spritzschutzmaßnahmen.
  - Beachte das Handbuch der Maschine, in welche die SF Spindel eingebaut wird.
- ⇒ Erfrage die maximalen Umfangsgeschwindigkeiten der eingesetzten Werkzeuge bei dem Werkzeuglieferanten.




Sind sie aus Fertigungsgründen nötig:

- Verwende nur gewuchtetes Werkzeug.
  - **DIN ISO 1940**
  - ♥ Gütestufe G2,5







Der Schneidendurchmesser des Werkzeuges (X) darf nicht größer sein als der maximale Spannbereich (Y).

- Spanne das Werkzeug immer so kurz wie möglich ein.
- Halte das Maß (Z) klein.
  - (Y) Siehe Kapitel: Technische Daten [▶ 12].

#### 4.2 Stillsetzen der SF Spindel

Um die Schnellfrequenzspindel für Installations- und Wartungsarbeiten außer Betrieb zu setzen, gehe wie folgt vor:

- Schalte die Energiezufuhr (Strom) vollständig ab.
- Schalte die Medienzufuhr (Luft und Flüssigkeit) vollständig ab.
- Stelle sicher, dass die Welle der SF-Spindel absolut stillsteht.

Wird die SF-Spindel stillgesetzt, um diese zu reinigen, dann:

Schließe nur die Sperrluft wieder an.

#### Tipp: Daten an Steuerung weiterleiten.

Nutze am Frequenzumrichter die Möglichkeit, die Stillstandsmeldung der Welle zu erkennen und zur Auswertung an die Steuerung der Maschine weiterzuleiten.

# 4.3 Installation und Wartung

- ⇒ Führe die Installations-, Reinigungs- und Wartungsarbeiten erst nach Stillsetzung der SF-Spindel und nach Stillstand der Welle aus.
- Installiere unmittelbar nach Abschluss der Arbeiten alle Sicherheits- und Schutzeinrichtungen der Maschine.

#### 4.4 Umbau und Reparatur

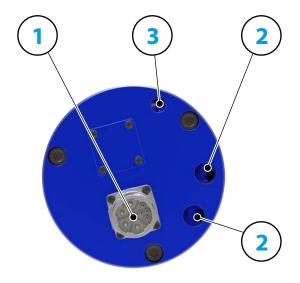
Umbau oder Veränderungen der SF-Spindel sind nur nach vorheriger Absprache mit der **Nakanishi Jaeger GmbH** zulässig.

Nur die im Kapitel "Service und Reparatur [▶ 36]" aufgeführten Servicepartner dürfen die SF-Spindel öffnen und reparieren.

Nur zugelassenes Zubehör ist auf Betriebssicherheit und Funktion geprüft.

#### 4.5 Unzulässige Betriebsweisen

Die Schnellfrequenzspindel ist nur bei bestimmungsgemäßer Verwendung betriebssicher.


Beachte die Sicherheitshinweise in allen Kapiteln des Handbuches, da ansonsten Gefahren für Personen, Umwelt, Maschine oder SF-Spindel entstehen können.

Die Nichtbeachtung von Sicherheitshinweisen kann zum Verlust jeglicher Gewährleistungs- und Schadensersatzansprüche führen.



# 5 Technische Beschreibung

# 5.1 Anschlüsse der SF-Spindel



| 1 | Elektrischer Anschluss |        |
|---|------------------------|--------|
| 2 | Kühlwasser             | G 1/4" |
| 3 | Sperrluft              | G 1/8" |

#### 5.2 Elektrischer Anschluss

Die SF-Spindel darf nur mit einem Frequenzumrichter (FU) betrieben werden.

- ⇒ Prüfe, ob Strom-, Spannungs- und Frequenzdaten der SF-Spindel mit den Ausgangsdaten des FU übereinstimmen.
- Verwende eine möglichst kurze Motorzuleitung.
- ⇒ Stelle die Drehzahl der SF-Spindel mit Hilfe des FU ein.
- ⇒ Entnimm weiterführende Informationen dem Handbuch des FU.

Der FU erkennt - je nach Ausführung – die nachfolgenden Betriebszustände der SF-Spindel:

- ☐ SF-Spindel dreht.
- ☐ SF-Spindel zu heiß.
- ☐ SF-Spindel steht etc.

Der FU gibt die Betriebszustände der SF-Spindel an die Steuerung der Maschine weiter.

# Hinweis: SpeedTEC Schnellverschluss-Verbindung herstellen.

- ▶ Bei Kombination SpeedTEC Gerätestecker/SpeedTEC Kabelstecker:
- Entferne den O Ring am SpeedTEC Gerätestecker.



# 5.3 Kühlung

Die Flüssigkeitskühlung hält die SF-Spindel während des Betriebes bei konstanter Temperatur.



#### Hinweis: Verlängerung der Lebensdauer durch Wärmeableitung.

Bei Betrieb der SF-Spindel entsteht Wärme. Die Temperatur der SF-Spindel soll + 45° C nicht überschreiten, da sonst die Lebensdauer der Lager verkürzt wird.

▶ Überprüfe die Temperatur der SF-Spindel am Gehäuse.

# 5.4 Sperrluft

Für die Vorgabe der Luftqualität siehe Kapitel "Luftreinheitsklassen (ISO 8573-1) [> 26]".

Die Sperrluft verhindert, dass Fremdkörper wie Späne und Flüssigkeiten (z.B. Emulsionen) in die SF-Spindel eindringen.

 Überprüfe, dass vorn zwischen dem Gehäuse und den drehenden Teilen der SF-Spindel Luft austritt.



# Technische Daten

# **6** Technische Daten

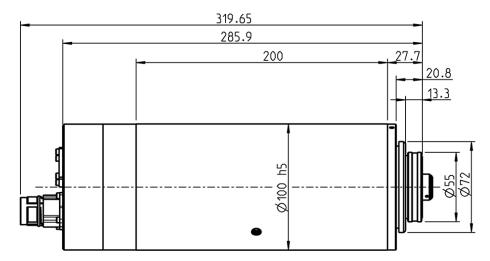
| - |   | _ | - |
|---|---|---|---|
| а | " | _ | г |
|   |   |   |   |

| Hybridkugellager (Stück)   | 4            |
|----------------------------|--------------|
| Lebensdauer-Fettschmierung | wartungsfrei |

# Leistungswerte Flüssigkeitsgekühlt

|              | Pmax./5s | S6-60% | S1-10 | 00%  |
|--------------|----------|--------|-------|------|
| Nennleistung | 11,7     | 8,7    | 7,7   | [kW] |
| Drehmoment   | 6,85     | 5,19   | 4,7   | [Nm] |
| Spannung     | 282      | 282    | 282   | [V]  |
| Strom        | 38       | 28,5   | 25,7  | [A]  |

# Motordaten


| Motortechnologie                          | 3-phasiger Asynchronantrieb (bürsten- und sensorlos) |
|-------------------------------------------|------------------------------------------------------|
| Frequenz                                  | 600 HZ                                               |
| Motorpolzahl (Paare)                      | 2                                                    |
| Nenndrehzahl                              | 18.000 rpm                                           |
| Beschleunigungs-/Bremswert<br>Pro Sekunde | 10 000 rpm<br>(andere Werte nach Rücksprache)        |

# Merkmale

| Drehzahlgeber               | Feldplatte (TTL)<br>Anzahl Signale = 6 |
|-----------------------------|----------------------------------------|
| Motorschutz                 | PTC 150° C<br>Pt1000                   |
| Gehäuse                     | Edelstahl                              |
| Gehäusedurchmesser          | 100 mm                                 |
| Kühlung                     | Flüssigkeitsgekühlt                    |
| Betriebsumgebungstemperatur | + 10° C + 45° C                        |
| Sperrluft                   |                                        |
| Schutzart                   | IP54                                   |
| (Sperrluft eingeschaltet)   | IF J <del>T</del>                      |
| Werkzeugwechsel             | Manueller Kegelwechsel                 |
| Werkzeugaufnahme            | HSK-C 40 + HSK-D 50                    |
| Spannbereich bis            | 16 mm                                  |
| Rechtslauf und Linkslauf    |                                        |
| Gerätestecker               | 9-pol (SpeedTEC)                       |
| Gewicht                     | ~ 12,5 kg                              |
| Rundlauf Innenkegel         | < 1 μ                                  |
| Planlauf                    | < 1 μ                                  |
|                             |                                        |



# 6.1 Abmessungen



(\*) = Spannbereich



# Technische Daten

# 6.2

Die Leistungen (S1, S6, S2) gelten für sinusförmige Ströme und sinusförmige Spannungen.

Die Leistungswerte der SF-Spindel hängen vom eingesetzten FU ab und können von den angegebenen Werten abweichen.

#### Motordaten

| Spindel Kennlinie                 | 8523                 |
|-----------------------------------|----------------------|
| Motortechnologie                  | AC-Motor             |
| Motortyp                          | ACM 82/50/80-4E      |
| Nennleistung                      | 7,7 kW               |
| Nenndrehzahl                      | 18.000 rpm           |
| Kühlung                           | Flüssigkeitsgekühlt  |
| Motorschutz                       | PTC 150° C<br>Pt1000 |
| Wicklungswiderstand (Phase-Phase) | 0,45 Ω               |
| Verlustleistung                   | 1.667 W – max. (S1)  |

#### **Gemessene Werte: S1-100%**

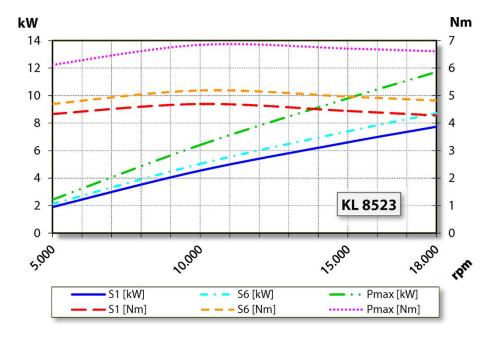
| Nenndrehzahl | 5 000 | 10 000 | 15 000 | 18 000 | rpm |
|--------------|-------|--------|--------|--------|-----|
| Drehzahl     | 4 185 | 9 242  | 14 271 | 17 288 | rpm |
| Frequenz     | 167   | 333    | 500    | 600    | HZ  |
| Nennleistung | 1,898 | 4,546  | 6,6    | 7,74   | kW  |
| Drehmoment   | 4,332 | 4,698  | 4,442  | 4,28   | Nm  |
| Spannung     | 89    | 170    | 240    | 282    | V   |
| Strom        | 24,8  | 25,7   | 24,8   | 24,3   | Α   |
| cos φ        | 0,84  | 0,8    | 0,79   | 0,78   |     |
|              |       |        |        |        |     |

#### **Gemessene Werte: S6-60%**

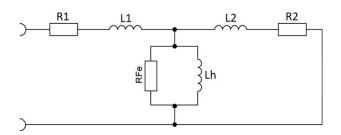
| Nenndrehzahl | 5 000 | 10 000 | 15 000 | 18 000 | rpm |
|--------------|-------|--------|--------|--------|-----|
| Drehzahl     | 4 313 | 9 269  | 14 277 | 17 282 | rpm |
| Frequenz     | 167   | 333    | 500    | 600    | HZ  |
| Nennleistung | 2,122 | 5,037  | 7,4    | 8,72   | kW  |
| Drehmoment   | 4,699 | 5,189  | 5      | 4,82   | Nm  |
| Spannung     | 89    | 170    | 240    | 282    | V   |
| Strom        | 27,4  | 28,5   | 27,8   | 27,3   | Α   |
| cos φ        | 0,85  | 0,81   | 0,8    | 0,8    |     |



#### Gemessene Werte: S2-Pmax./5s


| Nenndrehzahl | 5 000 | 10 000 | 15 000 | 18 000 | rpm |
|--------------|-------|--------|--------|--------|-----|
| Drehzahl     | 3 796 | 8 945  | 13 933 | 16 926 | rpm |
| Frequenz     | 167   | 333    | 500    | 600    | HZ  |
| Nennleistung | 2,433 | 6,412  | 9,8    | 11,72  | kW  |
| Drehmoment   | 6,12  | 6,846  | 6,712  | 6,61   | Nm  |
| Spannung     | 89    | 170    | 240    | 282    | V   |
| Strom        | 38    | 38     | 38     | 38     | Α   |
| cos φ        | 0,9   | 0,84   | 0,82   | 0,81   |     |

# Anmerkung zum Betrieb an statischen Frequenzumrichtern.


Bei Frequenzumrichterbetrieb muss die effektive Grundwellenspannung der angegebenen Motorspannung entsprechen.

Die gemessenen Ströme können aufgrund des Oberwellenanteils größer als die angegebenen Werte sein.

# 6.2.1 Leistungsdiagramm



#### 6.2.2 Ersatzschaltbilddaten









# Hinweis: Beschädigung durch falsche Leistungswerte.

Die Werte der Parameter beziehen sich ausschließlich auf den Motor.

▶ Werte SF-Spindel: siehe Tabellen S1-100%, S6-60% und S2-Pmax.

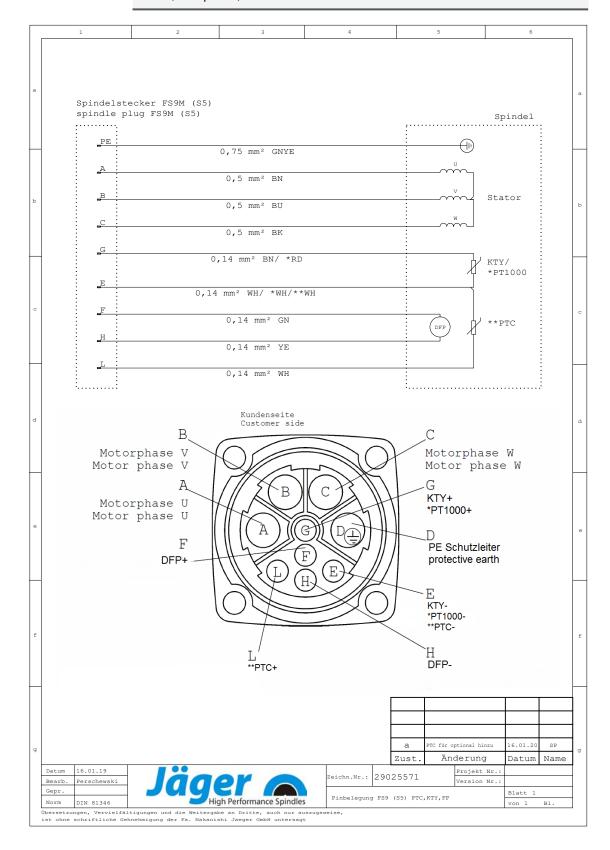
| p0304Bemessungsspannung (Phase-Phase)380Vrmsp0305Bemessungstrom22,5Armsp0307Bemessungsleistung9,8kWp0308Bemessungsleistungsfaktor0,8cos φp0310Bemessungsfrequenz833Hzp0311Bemessungsdrehzahl24.113rpmBemessungsverlustleistung1.667WNenndrehzahl18.000rpmp0312Bemessungsdrehmoment3,884Nmp0314Motorpolzahl (Paare)2p0320Bemessungmagnetisierungstrom8,9Armsp0321Maximaldrehzahl42.000rpmp0322Maximaldrehzahl42.000rpmp0326Kippmomentkorrekturfaktor100%p0335MotorkühlartFlüssigkeitsgekühltp0341Trägheitsmoment0,001265kgm²p0348Einsatzdrehzahl Feldschwächung VDC=600V60.178rpmp0350Statorwiderstand, kalt (Strang)0mHp0351Rotorwiderstand, kalt (Strang)0mHp0354Rotorwiderstand, kalt0,243Ωp0355Statorstreuinduktivität0,365mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Varnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0606Motortemperatur Störschwelle130°Cp0607Motortemperatur Störschwelle110 <th>Parameter*</th> <th>Bedeutung</th> <th>Wert</th> <th>Einheit</th>                                                                                                                                                                                             | Parameter* | Bedeutung                               | Wert      | Einheit     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|-----------|-------------|
| p0307Bemessungsleistung9,8kWp0308Bemessungsleistungsfaktor0,8cos φp0310Bemessungsfrequenz833Hzp0311Bemessungsdrehzahl24.113rpmBemessungsverlustleistung1.667WNenndrehzahl18.000rpmp0312Bemessungsdrehmoment3,884Nmp0314Motorpolzahl (Paare)2p0320Bemessungmagnetisierungstrom8,9Armsp0321Maximaldrehzahl42.000rpmp0322Maximaldrehzahl42.000rpmp0326Kippmomentkorrekturfaktor100%p0335MotorkühlartFlüssigkeitsgekühltp0341Trägheitsmoment0,001265kgm²p0348Einsatzdrehzahl Feldschwächung VDC=600V60.178rpmp0350Statorwiderstand, kalt (Strang)0,225Ωp0353Vorschaltinduktivität (Strang)0mHp0354Rotorwiderstand, kalt0,243Ωp0355Statorstreuinduktivität0,365mHp0358Rotorstreuinduktivität0,352mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Störschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0606Motortemperatur Störschwelle130°Cp0607Motortemperatur Störschwelle130°Cp0608Motortemperatur Störschwelle13                                                                                                                                                                                                                                                                | p0304      | Bemessungsspannung (Phase-Phase)        | 380       | Vrms        |
| p0308         Bemessungsleistungsfaktor         0,8         cos φ           p0310         Bemessungsfrequenz         833         Hz           p0311         Bemessungsdrehzahl         24.113         rpm            Bemessungsverlustleistung         1.667         W            Nenndrehzahl         18.000         rpm           p0312         Bemessungsdrehmoment         3,884         Nm           p0314         Motorpolzahl (Paare)         2            p0320         Bemessungmagnetisierungstrom         8,9         Arms           p0321         Maximaldrehzahl         42.000         rpm           p0322         Maximaldrehzahl         42.000         rpm           p0323         Motorkühlart         Flüssigkeitsgekühlt           p0341         Trägheitsmoment         0,001265         kgm²           p0348         Einsatzdrehzahl Feldschwächung VDC=600V         60.178         rpm           p0350         Statorwiderstand, kalt (Strang)         0,225         Ω           p0353         Vorschaltinduktivität (Strang)         0         mH           p0354         Rotorwiderstand, kalt         0,243         Ω           p0358         Rotorstreuind | p0305      | Bemessungsstrom                         | 22,5      | Arms        |
| p0310         Bemessungsfrequenz         833         Hz           p0311         Bemessungsdrehzahl         24.113         rpm            Bemessungsverlustleistung         1.667         W            Nenndrehzahl         18.000         rpm           p0312         Bemessungsdrehmoment         3,884         Nm           p0314         Motorpolzahl (Paare)         2            p0320         Bemessungmagnetisierungstrom         8,9         Arms           p0321         Maximaldrehzahl         42.000         rpm           p0322         Maximaldrehzahl         42.000         rpm           p0323         Motorkühlart         Flüssigkeitsgekühlt           p0335         Motorkühlart         Flüssigkeitsgekühlt           p0341         Trägheitsmoment         0,001265         kgm²           p0348         Einsatzdrehzahl Feldschwächung VDC=600V         60.178         rpm           p0350         Statorwiderstand, kalt (Strang)         0,225         Ω           p0353         Vorschaltinduktivität (Strang)         0         mH           p0354         Rotorwiderstand, kalt         0,243         Ω           p0358         Rotorstreuinduktivität   | p0307      | Bemessungsleistung                      | 9,8       | kW          |
| p0311Bemessungsdrehzahl24.113rpmBemessungsverlustleistung1.667WNenndrehzahl18.000rpmp0312Bemessungsdrehmoment3,884Nmp0314Motorpolzahl (Paare)2p0320Bemessungmagnetisierungstrom8,9Armsp0322Maximaldrehzahl42,000rpmp0326Kippmomentkorrekturfaktor100%p0335MotorkühlartFlüssigkeitsgekühltp0341Trägheitsmoment0,001265kgm²p0348Einsatzdrehzahl Feldschwächung VDC=600V60.178rpmp0350Statorwiderstand, kalt (Strang)0,225Ωp0353Vorschaltinduktivität (Strang)0mHp0354Rotorwiderstand, kalt0,243Ωp0356Statorstreuinduktivität0,365mHp0358Rotorstreuinduktivität0,352mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                           | p0308      | Bemessungsleistungsfaktor               | 0,8       | cos φ       |
| Bemessungsverlustleistung       1.667       W          Nenndrehzahl       18.000       rpm         p0312       Bemessungsdrehmoment       3,884       Nm         p0314       Motorpolzahl (Paare)       2          p0320       Bemessungmagnetisierungstrom       8,9       Arms         p0322       Maximaldrehzahl       42.000       rpm         p0326       Kippmomentkorrekturfaktor       100       %         p0335       Motorkühlart       Flüssigkeitsgekühlt         p0341       Trägheitsmoment       0,001265       kgm²         p0348       Einsatzdrehzahl Feldschwächung VDC=600V       60.178       rpm         p0350       Statorwiderstand, kalt (Strang)       0,225       Ω         p0353       Vorschaltinduktivität (Strang)       0       mH         p0354       Rotorwiderstand, kalt       0,243       Ω         p0355       Statorstreuinduktivität       0,365       mH         p0358       Rotorstreuinduktivität       0,352       mH         p0360       Hauptinduktivität       4,035       mH         p0604       Motortemperatur Störschwelle       110       °C         p0605       Motorte                                                         | p0310      | Bemessungsfrequenz                      | 833       | Hz          |
| Nenndrehzahl18.000rpmp0312Bemessungsdrehmoment3,884Nmp0314Motorpolzahl (Paare)2p0320Bemessungmagnetisierungstrom8,9Armsp0322Maximaldrehzahl42.000rpmp0326Kippmomentkorrekturfaktor100%p0335MotorkühlartFlüssigkeitsgekühltp0341Trägheitsmoment0,001265kgm²p0348Einsatzdrehzahl Feldschwächung VDC=600V60.178rpmp0350Statorwiderstand, kalt (Strang)0,225Ωp0353Vorschaltinduktivität (Strang)0mHp0354Rotorwiderstand, kalt0,243Ωp0356Statorstreuinduktivität0,365mHp0358Rotorstreuinduktivität0,365mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0606Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                               | p0311      | Bemessungsdrehzahl                      | 24.113    | rpm         |
| p0312Bemessungsdrehmoment3,884Nmp0314Motorpolzahl (Paare)2p0320Bemessungmagnetisierungstrom8,9Armsp0322Maximaldrehzahl42.000rpmp0326Kippmomentkorrekturfaktor100%p0335MotorkühlartFlüssigkeitsgekühltp0341Trägheitsmoment0,001265kgm²p0348Einsatzdrehzahl Feldschwächung VDC=600V60.178rpmp0350Statorwiderstand, kalt (Strang)0,225Ωp0353Vorschaltinduktivität (Strang)0mHp0354Rotorwiderstand, kalt0,243Ωp0356Statorstreuinduktivität0,365mHp0358Rotorstreuinduktivität0,352mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | Bemessungsverlustleistung               | 1.667     | W           |
| p0314Motorpolzahl (Paare)2p0320Bemessungmagnetisierungstrom8,9Armsp0322Maximaldrehzahl42.000rpmp0326Kippmomentkorrekturfaktor100%p0335MotorkühlartFlüssigkeitsgekühltp0341Trägheitsmoment0,001265kgm²p0348Einsatzdrehzahl Feldschwächung VDC=600V60.178rpmp0350Statorwiderstand, kalt (Strang)0,225Ωp0353Vorschaltinduktivität (Strang)0mHp0354Rotorwiderstand, kalt0,243Ωp0356Statorstreuinduktivität0,365mHp0358Rotorstreuinduktivität0,352mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | Nenndrehzahl                            | 18.000    | rpm         |
| p0320Bemessungmagnetisierungstrom8,9Armsp0322Maximaldrehzahl42.000rpmp0326Kippmomentkorrekturfaktor100%p0335MotorkühlartFlüssigkeitsgekühltp0341Trägheitsmoment0,001265kgm²p0348Einsatzdrehzahl Feldschwächung VDC=600V60.178rpmp0350Statorwiderstand, kalt (Strang)0,225Ωp0353Vorschaltinduktivität (Strang)0mHp0354Rotorwiderstand, kalt0,243Ωp0356Statorstreuinduktivität0,365mHp0358Rotorstreuinduktivität0,352mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p0312      | Bemessungsdrehmoment                    | 3,884     | Nm          |
| p0322Maximaldrehzahl42.000rpmp0326Kippmomentkorrekturfaktor100%p0335MotorkühlartFlüssigkeitsgekühltp0341Trägheitsmoment0,001265kgm²p0348Einsatzdrehzahl Feldschwächung VDC=600V60.178rpmp0350Statorwiderstand, kalt (Strang)0,225Ωp0353Vorschaltinduktivität (Strang)0mHp0354Rotorwiderstand, kalt0,243Ωp0355Statorstreuinduktivität0,365mHp0358Rotorstreuinduktivität0,352mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p0314      | Motorpolzahl (Paare)                    | 2         |             |
| p0326Kippmomentkorrekturfaktor100%p0335MotorkühlartFlüssigkeitsgekühltp0341Trägheitsmoment0,001265kgm²p0348Einsatzdrehzahl Feldschwächung VDC=600V60.178rpmp0350Statorwiderstand, kalt (Strang)0,225Ωp0353Vorschaltinduktivität (Strang)0mHp0354Rotorwiderstand, kalt0,243Ωp0356Statorstreuinduktivität0,365mHp0358Rotorstreuinduktivität0,352mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p0320      | Bemessung magnetisier ung strom         | 8,9       | Arms        |
| p0335MotorkühlartFlüssigkeitsgekühltp0341Trägheitsmoment0,001265kgm²p0348Einsatzdrehzahl Feldschwächung VDC=600V60.178rpmp0350Statorwiderstand, kalt (Strang)0,225Ωp0353Vorschaltinduktivität (Strang)0mHp0354Rotorwiderstand, kalt0,243Ωp0356Statorstreuinduktivität0,365mHp0358Rotorstreuinduktivität0,352mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p0322      | Maximaldrehzahl                         | 42.000    | rpm         |
| p0341Trägheitsmoment0,001265kgm²p0348Einsatzdrehzahl Feldschwächung VDC=600V60.178rpmp0350Statorwiderstand, kalt (Strang)0,225Ωp0353Vorschaltinduktivität (Strang)0mHp0354Rotorwiderstand, kalt0,243Ωp0356Statorstreuinduktivität0,365mHp0358Rotorstreuinduktivität0,352mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p0326      | Kippmomentkorrekturfaktor               | 100       | %           |
| p0348Einsatzdrehzahl Feldschwächung VDC=600V60.178rpmp0350Statorwiderstand, kalt (Strang)0,225Ωp0353Vorschaltinduktivität (Strang)0mHp0354Rotorwiderstand, kalt0,243Ωp0356Statorstreuinduktivität0,365mHp0358Rotorstreuinduktivität0,352mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p0335      | Motorkühlart                            | Flüssigke | eitsgekühlt |
| p0350Statorwiderstand, kalt (Strang)0,225Ωp0353Vorschaltinduktivität (Strang)0mHp0354Rotorwiderstand, kalt0,243Ωp0356Statorstreuinduktivität0,365mHp0358Rotorstreuinduktivität0,352mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p0341      | Trägheitsmoment                         | 0,001265  | kgm²        |
| p0353Vorschaltinduktivität (Strang)0mHp0354Rotorwiderstand, kalt0,243Ωp0356Statorstreuinduktivität0,365mHp0358Rotorstreuinduktivität0,352mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | p0348      | Einsatzdrehzahl Feldschwächung VDC=600V | 60.178    | rpm         |
| p0354Rotorwiderstand, kalt0,243Ωp0356Statorstreuinduktivität0,365mHp0358Rotorstreuinduktivität0,352mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p0350      | Statorwiderstand, kalt (Strang)         | 0,225     | Ω           |
| p0356Statorstreuinduktivität0,365mHp0358Rotorstreuinduktivität0,352mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p0353      | Vorschaltinduktivität (Strang)          | 0         | mH          |
| p0358Rotorstreuinduktivität0,352mHp0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p0354      | Rotorwiderstand, kalt                   | 0,243     | Ω           |
| p0360Hauptinduktivität4,035mHp0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p0356      | Statorstreuinduktivität                 | 0,365     | mH          |
| p0604Motortemperatur Warnschwelle110°Cp0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p0358      | Rotorstreuinduktivität                  | 0,352     | mH          |
| p0605Motortemperatur Störschwelle130°Cp0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0μFMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p0360      | Hauptinduktivität                       | 4,035     | mH          |
| p0640Stromgrenze380Armsp1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0 $\mu$ FMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p0604      | Motortemperatur Warnschwelle            | 110       | °C          |
| p1800Pulsfrequenz16kHzZwischenkreisspannung565VDCVorschaltkapazität0 $\mu$ FMaximalspannungVLeerlaufabsenkung%Statorstreureaktanz X11,91 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p0605      | Motortemperatur Störschwelle            | 130       | °C          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p0640      | Stromgrenze                             | 380       | Arms        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | p1800      | Pulsfrequenz                            | 16        | kHz         |
| Maximalspannung V Leerlaufabsenkung % Statorstreureaktanz X1 1,91 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | Zwischenkreisspannung                   | 565       | VDC         |
| Leerlaufabsenkung % Statorstreureaktanz X1 1,91 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Vorschaltkapazität                      | 0         | μF          |
| Statorstreureaktanz X1 1,91 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | Maximalspannung                         |           | V           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | Leerlaufabsenkung                       |           | %           |
| Rototstreureaktanz X2 1.841 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | Statorstreureaktanz X1                  | 1,91      | Ω           |
| 1,011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Rototstreureaktanz X2                   | 1,841     | Ω           |
| Hauptfeldreaktanz Xh 21,128 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | Hauptfeldreaktanz Xh                    | 21,128    | Ω           |

<sup>(\*)</sup> Parameter Siemens SINAMICS 120





| Parameter | Bedeutung                               | Wert   | Einheit |
|-----------|-----------------------------------------|--------|---------|
|           | Entsättigungsdrehzahl **                | 40.082 | rpm     |
|           | Hauptinduktivität bei Maximaldrehzahl** | 4,472  | mH      |
|           | Sättigungsfaktor **                     | 1,187  | %       |
|           | Kippmomentreduktionsfaktor**            | 58,09  | %       |


(\*\*) Zusatzparameter Heidenhain



# **6.3** Schaltplan

# Hinweis: Nicht die werksseitige Belegung ändern.

Jede Veränderung kann Überspannungen an den elektrischen Bauteilen (z. B. PTC, Feldplatte) verursachen.







# 1800 1600 1600 1200 1200 150 200 Temperatur t / °C

# **Motorschutz Pt1000**

# **Platin-Temperatursensor**

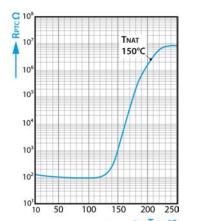
Ausführung gemäß:

- ☐ DIN EN 60751
- ☐ Genauigkeitsklasse B

# **Technische Daten**

Temperatur/Widerstands-Beziehung (Grundwertereihe)

| t <sub>90</sub> /°C |      |      | (*) W | 'iderstan | d bei de | r Tempe | ratur t <sub>90</sub> / | °C [Ω] |      |      |
|---------------------|------|------|-------|-----------|----------|---------|-------------------------|--------|------|------|
|                     | 0    | 1    | 2     | 3         | 4        | 5       | 6                       | 7      | 8    | 9    |
| 0                   | 1000 | 1004 | 1008  | 1012      | 1016     | 1020    | 1023                    | 1027   | 1031 | 1035 |
| 10                  | 1039 | 1043 | 1047  | 1051      | 1055     | 1059    | 1062                    | 1066   | 1070 | 1074 |
| 20                  | 1078 | 1082 | 1086  | 1090      | 1094     | 1097    | 1101                    | 1105   | 1109 | 1113 |
| 30                  | 1117 | 1121 | 1125  | 1128      | 1132     | 1136    | 1140                    | 1144   | 1148 | 1152 |
| 40                  | 1155 | 1159 | 1163  | 1167      | 1171     | 1175    | 1179                    | 1182   | 1186 | 1190 |
| 50                  | 1194 | 1198 | 1202  | 1206      | 1209     | 1213    | 1217                    | 1221   | 1225 | 1229 |
| 60                  | 1232 | 1236 | 1240  | 1244      | 1248     | 1252    | 1255                    | 1259   | 1263 | 1267 |
| 70                  | 1271 | 1275 | 1278  | 1282      | 1286     | 1290    | 1294                    | 1298   | 1301 | 1305 |
| 80                  | 1309 | 1313 | 1317  | 1320      | 1324     | 1328    | 1332                    | 1336   | 1340 | 1343 |
| 90                  | 1347 | 1351 | 1355  | 1359      | 1362     | 1366    | 1370                    | 1374   | 1378 | 1381 |
| 100                 | 1385 | 1389 | 1393  | 1396      | 1400     | 1404    | 1408                    | 1412   | 1415 | 1419 |
| 110                 | 1423 | 1427 | 1431  | 1434      | 1438     | 1442    | 1446                    | 1449   | 1453 | 1457 |
| 120                 | 1461 | 1464 | 1468  | 1472      | 1476     | 1480    | 1483                    | 1487   | 1491 | 1495 |
| 130                 | 1498 | 1502 | 1506  | 1510      | 1513     | 1517    | 1521                    | 1525   | 1528 | 1532 |
| 140                 | 1536 | 1540 | 1543  | 1547      | 1551     | 1555    | 1558                    | 1562   | 1566 | 1570 |
| 150                 | 1573 | 1577 | 1581  | 1585      | 1588     | 1592    | 1596                    | 1599   | 1603 | 1607 |
| 160                 | 1611 | 1614 | 1618  | 1622      | 1625     | 1629    | 1633                    | 1637   | 1640 | 1644 |
| 170                 | 1648 | 1651 | 1655  | 1659      | 1663     | 1666    | 1670                    | 1674   | 1677 | 1681 |
| 180                 | 1685 | 1689 | 1692  | 1696      | 1700     | 1703    | 1707                    | 1711   | 1714 | 1718 |


(\*) Gerundete Werte



# 6.5 Motorschutz PTC 150° C

Kaltleiter mit Schutzisolierung

Kennlinien der Nennansprechtemperaturen 90 °C bis 160 °C nach DIN VDE V 0898-1-401.



Kaltleiterwiderstand R<sub>PTC</sub> in Abhängigkeit von der Kaltleitertemperatur T<sub>PTC</sub> (Kleinsignalwiderstandswerte).

#### **Technische Daten**

| Тур                       |                                              | M135                  |             |
|---------------------------|----------------------------------------------|-----------------------|-------------|
| Max. Betriebsspannung     | $(T_A = 0 40^{\circ} C)$                     | V <sub>max</sub>      | 30 V        |
| Max. Messspannung         | $(T_A - 25 \text{ K}T_{NAT} + 15 \text{ K})$ | V <sub>Mes, max</sub> | 7.5 V       |
| Nennwiderstand            | $(V_{PTC} \le 2.5 \text{ V})$                | RN                    | ≤ 250 Ω     |
| Isolationsprüfspannung    |                                              | $V_{is}$              | 3 kV~       |
| Ansprechzeit              |                                              | t <sub>a</sub>        | < 2.5 s     |
| Betriebstemperaturbereich | (V=0)                                        | $T_{op}$              | -25/+180° C |

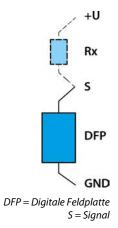
#### Widerstandswerte

| $T_{NAT} \pm \Delta T$ | $R (T_{NAT} - \Delta T)$ $(V_{PTC} \le 2.5 \text{ V})$ | $R (T_{NAT} + \Delta T)$ $(V_{PTC} \le 2.5 \text{ V})$ | R $(T_{NAT} + 15 \text{ K})$<br>$(V_{PTC} \le 7.5 \text{ V})$ | R $(T_{NAT} + 23 \text{ K})$<br>$(V_{PTC} \le 2.5 \text{ V})$ |
|------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| 150 ±5°C               | ≤ 550 Ω                                                | ≥ 1330 Ω                                               | ≥ 4 kΩ                                                        |                                                               |

20 ( 40 ) Artikel-Nr. 10206008, Revision 00



# **6.6 Drehzahlgeber (Digitale Feldplatte)**


Für eine störungsfreie Auswertung ist eine gute Verdrahtung notwendig.

- Verwende verdrillte und abgeschirmte Leitungen.
- Schließe die SF-Spindel mit unten gezeigtem Anschlussbeispiel an.

# Hinweis: Widerstand (Rx).

Falls in dem Auswertegerät (FU) bereits der Widerstand (Rx\*) integriert ist:

Schließe nur Signal und Masse an.



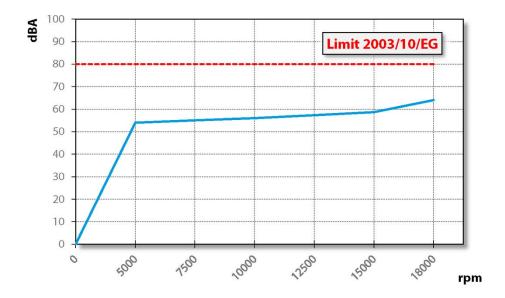
| Versorgungsspannung (U) | Rx (*) | Signal (**) |
|-------------------------|--------|-------------|
| + 8 V                   | 220 Ω  | 1000 mV     |
| + 8 V                   | 450 Ω  | 2000 mV     |
| + 12 V                  | 220 Ω  | 1000 mV     |
| + 12 V                  | 680 Ω  | 3000 mV     |
| + 15 V                  | 220 Ω  | 1000 mV     |
| + 15 V                  | 680 Ω  | 3000 mV     |
| + 24 V                  | 220 Ω  | 1000 mV     |
| + 24 V                  | 680 Ω  | 3000 mV     |

<sup>\*</sup>Entfällt, wenn im Auswertegerät (Frequenzumrichter etc.) ein Widerstand integriert ist.

<sup>\*\*</sup>Werte können je nach Messverfahren  $\pm$  20 % abweichen.






# Luftschallemissionen





ACHTUNG: Lärm beeinträchtigt die Gesundheit.

▶ Betreibe die SF-Spindel nur mit einem Gehörschutz.





#### 7

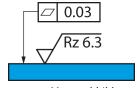
#### **Betriebsort**



# **GEFAHR: Durch weggeschleuderte Teile.**

Wird die SF-Spindel falsch befestigt, kann sie sich bei Betrieb lösen und durch die entstehenden Kräfte weggeschleudert werden.

► Spanne die SF-Spindel fest ein.






# WARNUNG: Verletzungsgefahr durch weggeschleuderte Teile.

Die SF-Spindel arbeitet mit hohen Drehzahlen, durch die Späne mit großer Wucht weggeschleudert werden.

- ► Entferne auf keinen Fall die Schutzvorrichtungen der Maschine oder der Anlage.
- Arbeite immer mit Schutzbrille.

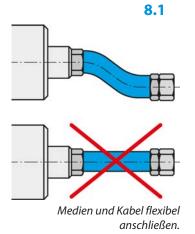


Musterabbildung: Befestigungsfläche

Beachte vor der Installation der SF-Spindel nachfolgende Punkte:

- Stelle sicher, dass in der Maschine der zur SF-Spindel passende Spindelträger montiert ist.
- Überprüfe die Verbindungsschläuche auf Beschädigungen.
- ⇒ Überprüfe die Verbindungskabel auf Beschädigungen.
- Verwende nur unbeschädigte Schläuche und Kabel.
- Lasse die SF-Spindel nicht in der Nähe einer Wärmequelle laufen.




#### 8 Installation

#### Vor der Installation:

Überprüfe die SF-Spindel auf Vollständigkeit und auf Schäden.

#### Falls die SF-Spindel länger eingelagert wurde:

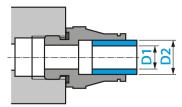
→ Führe alle im Kapitel Inbetriebnahme nach Lagerung aufgeführten Schritte aus.



#### **SF-Spindel installieren**

Führe folgende Schritte der Reihenfolge nach aus, um die SF-Spindel zu installieren:

- ➡ Entferne die Verschlussstopfen, die die Anschlüsse beim Transport vor Beschädigung und Verunreinigung schützen.
- Montiere anstelle dieser Verschlussstopfen die passenden Schlauchverschraubungen.
- Montiere die entsprechenden Schläuche in den Schlauchverschraubungen.
- Stelle sicher, dass die Anschlüsse flexibel und entlastet sind.
- ⇒ Dichte alle Anschlüsse für Druckluft axial zur Einschraubrichtung ab.
- ⇒ Dichte alle Anschlüsse für Kühlwasser axial zur Einschraubrichtung ab.
- ⇒ Falls die SF-Spindel mit Sperrluft ausgerüstet ist:
  - Stelle sicher, dass keine Luftströmung im Lagerbereich entstehen kann.
  - Verwende immer abgedichtete Kabeldosen beim Anschließen der elektrischen Leitungen.
- Befestige die SF-Spindel auf der Maschine.
- Verbinde die Schläuche mit dem Anschluss des jeweiligen Mediums.
- ➡ Entferne die Schutzkappe, die die Welle beim Transport vor Beschädigung und Verunreinigung schützen.
- Schließe die Stecker der Betriebsanschlussleitungen an dem entsprechenden Anschluss der SF-Spindel und am Frequenzumrichter an.
- Verriegele die Stecker.


#### Hinweis: SpeedTEC Schnellverschluss-Verbindung herstellen.

- ▶ Bei Kombination SpeedTEC Gerätestecker/SpeedTEC Kabelstecker:
- ► Entferne den O Ring am SpeedTEC Gerätestecker.

24 ( 40 ) Artikel-Nr. 10206008, Revision 00







⇒ Entnimm die Nennweite der Medienzuleitungen folgender Tabelle:

| DN  | Medium     | D1     |                                 | D2    | 2                               |
|-----|------------|--------|---------------------------------|-------|---------------------------------|
| 2,8 | Druckluft  | 2,8 mm | <sup>7</sup> / <sub>64</sub> "  | 4 mm  | <sup>5</sup> / <sub>32</sub> "  |
| 4   | Druckluft  | 4 mm   | <sup>5</sup> / <sub>32</sub> "  | 6 mm  | <sup>15</sup> / <sub>64</sub> " |
| 6   | Druckluft  | 6 mm   | <sup>15</sup> / <sub>64</sub> " | 8 mm  | <sup>5</sup> / <sub>16</sub> "  |
| 5,5 | Kühlwasser | 5,5 mm | <sup>7</sup> / <sub>32</sub> "  | 8 mm  | <sup>5</sup> / <sub>16</sub> "  |
| 7   | Kühlwasser | 7 mm   | <sup>9</sup> / <sub>32</sub> "  | 10 mm | <sup>25</sup> / <sub>64</sub> " |

#### 8.3 Kühlwasser

#### 8.3.1 Qualität des Kühlwassers

Destilliertes Wasser verursacht an blanken Teilen sofort Korrosion, die zunächst oft unbemerkt bleibt, später jedoch gravierende Korrosionsschäden nach sich zieht.

Verwende kein reines oder destilliertes Wasser.

Ablagerungen in den Kühlkanälen durch ungeeignetes Kühlwasser verhindern die Wärmeableitung.

⇒ Verwende Kühlwasser mit folgenden Eigenschaften:

| Trinkwasser                | nach 98/83/EG     |
|----------------------------|-------------------|
| Härtegrad                  | 1 – 15°dH         |
| PH-Wert                    | 7-9               |
| Zusatz (Korrosionsschutz ) | 20% Antrifrogen N |

# 8.3.2 Kühlung einstellen

⇒ Halte folgende Werte für die Flüssigkeitskühlung ein:

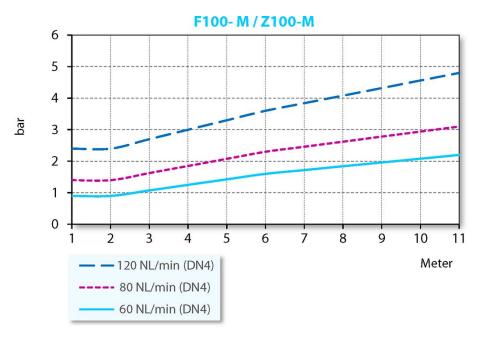
| Schlauchdurchmesser (*) | mindestens DN 5.5    |
|-------------------------|----------------------|
| Vorlauftemperatur       | mindestens 20° C     |
| Volumenstrom            | mindestens 1.5 L/min |
| Rücklauftemperatur      | maximal 40° C        |

(\*) UV-undurchlässige Kühlschläuche verwenden.



#### 8.4 Druckluft

# 8.4.1 Luftreinheitsklassen (ISO 8573-1)


| Feste Verunreinigungen | <b>Klasse 3</b> Filtergrad besser 5 μm für Feststoffe |
|------------------------|-------------------------------------------------------|
| Wassergehalt           | <b>Klasse 4</b><br>max. Drucktaupunkt +3 °C           |
| Gesamtölgehalt         | <b>Klasse 3</b><br>max. Ölgehalt 1 mg/m³              |

# 8.4.2 Sperrluft einstellen

Für die Vorgabe der Luftqualität siehe Kapitel "Luftreinheitsklassen (ISO 8573-1) [> 26]".

Der Einstellwert für die Sperrluft ist von Schlauchdurchmesser und Schlauchlänge abhängig.

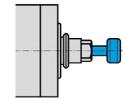
- Schlauchdurchmesser: DN 4
- **Solution** Entrimm den Einstellwert dem nachstehenden Diagramm.
- Schalte steuerungstechnisch Sperrluft und Kühlung beim Einschalten der Maschine mit ein. Damit wird die SF-Spindel auch im Stillstand geschützt.



| Niedrigster Sperrluftbedarf | Trockenbearbeitung           |
|-----------------------------|------------------------------|
| Mittlerer Sperrluftbedarf   | Bearbeitung mit Spritzwasser |
| Höchster Sperrluftbedarf    | Bearbeitung mit Strahlwasser |



#### 9


#### Inbetriebnahme



## **GEFAHR: Durch weggeschleuderte Teile.**

Bei falsch gewählter Drehzahl können die SF-Spindel oder das Werkzeug zerstört werden und deren Bruchstücke weggeschleudert werden.

- ▶ Beachte die maximale Drehzahl für das gewählte Werkzeug.
- Beachte die maximale Drehzahl der SF-Spindel.
- Die max. zulässige Drehzahl der SF-Spindel für Inbetriebnahme / Bearbeitung ist immer die niedrigste angegebene Drehzahl.



Musterabbildung: Schaft einsetzen

#### Hinweis: Funktion gewährleisten.

Betreibe die SF Spindel nie ohne einen eingespannten Werkzeugschaft.

#### Ohne eingespannten Werkzeugschaft wird:

- ☐ Das Spannsystem durch die Fliehkräfte beschädigt.
- ☐ Das Spannsystem verstellt.
- ☐ Die Wuchtgüte der SF-Spindel beeinflusst.
- ☐ Die Lagerung beschädigt.
- ⇒ Drehe die Welle der Spindel mindestens 10-mal per Hand.
- Reinige vor dem Einlagern und vor der Inbetriebnahme nur den Kühlkanal mit Pressluft.

#### 9.1

# 100% 80% 60% 40% 20% Dauer der Belastuna (Minute)

#### **Einlaufschema**

- Nimm die SF-Spindel mit eingespanntem Werkzeug (ohne Bearbeitung) ca.
   10 Minuten lang in Betrieb.
- Die Drehzahl beträgt dabei höchstens 20 % der maximal zulässigen Drehzahl der SF-Spindel.
  - Siehe Definition: max. zulässige Drehzahl
- Lasse die SF-Spindel ca. 2 Minuten lang mit höchstens 50 % der maximal zulässigen Drehzahl laufen.
- Betreibe die SF-Spindel noch ca. 2 Minuten mit höchstens 80 % der maximal zulässigen Drehzahl.

#### Die SF-Spindel ist jetzt einsatzbereit.



## 9.2 Täglicher Start

Gehe wie folgt vor, um die Fettschmierung der Lagerung vorzuwärmen und zu schonen:

- ⇒ Betreibe die SF-Spindel bei gespanntem Werkzeug (ohne Bearbeitung).
  - Ca. 2 Minuten.
  - Mit maximal 50 % der maximal zulässigen Drehzahl. (Siehe Kapitel Inbetriebnahme [▶ 27])

Die SF-Spindel erreicht dadurch ihre Betriebstemperatur.

#### 9.3 Stillstandsmeldung

Nutze am Frequenzumrichter die Möglichkeit, die Stillstandsmeldung der Welle zu erkennen und zur Auswertung an die Steuerung der Maschine weiterzuleiten.

#### 9.4 Inbetriebnahme nach Lagerung

- Nimm die SF-Spindel erst in Betrieb, wenn sich deren Temperatur von der Temperatur des Lagerortes an die Temperatur des Einsatzortes – angepasst hat.
  - Die Temperaturdifferenz von SF-Spindel zu Einsatzort soll nicht mehr als 10° C betragen.
- ⇒ Führe alle im Kapitel "Wartung [> 33]" aufgeführten Schritte durch.
- ⇒ Betreibe die SF-Spindel mit höchstens 50 % der zulässigen Drehzahl ca. 5 Minuten lang.
  - Siehe Kapitel Inbetriebnahme [▶ 27]
- ⇒ Betreibe die SF-Spindel noch ca. 2 Minuten mit maximal 80 % der zulässigen Drehzahl.

Dadurch wird die Fettschmierung der Lager vorgewärmt und geschont.

28 ( 40 ) Artikel-Nr. 10206008, Revision 00



#### 10


# **^**

# Werkzeugwechsel

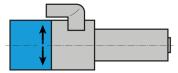
# ACHTUNG: Einzugsgefahr durch drehende Welle.

Falls sich die Welle noch dreht, können die Finger und die Hand eingezogen und gequetscht werden.

Werkzeug nur wechseln, wenn die Welle stillsteht.



Musterabbildung: Schaft einsetzen


## Hinweis: Funktion gewährleisten.

Betreibe die SF Spindel nie ohne einen eingespannten Werkzeugschaft.

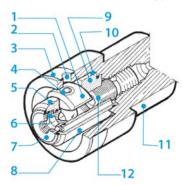
#### Ohne eingespannten Werkzeugschaft wird:

- ☐ Das Spannsystem durch die Fliehkräfte beschädigt.
- ☐ Das Spannsystem verstellt.
- ☐ Die Wuchtgüte der SF-Spindel beeinflusst.
- ☐ Die Lagerung beschädigt.

#### 10.1

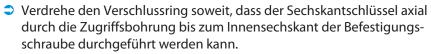


Musterabbildung: Kennzeichnung Drehrichtung

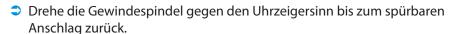

#### **Rechtslauf und Linkslauf**

Das Spannsystem der SF-Spindel ist auf Rechtslauf und Linkslauf ausgelegt.

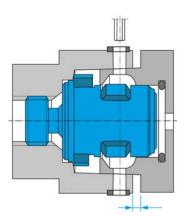
- Verwende nur Werkzeuge mit der passenden Drehrichtung zur SF-Spindel.
- Verwende nur Werkzeugaufnahmen mit der passenden Drehrichtung zur SF-Spindel.
- Stelle am FU die Drehrichtung der SF-Spindel entsprechend der Drehrichtung des eingesetzten Werkzeuges / Werkzeugaufnahme ein.



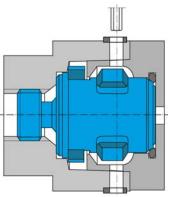

#### 10.2




#### **Manueller HSK**


- 1 Spannsegment
- 2 Zugriffbohrung
- 3 Verschlussring
- 4 Gewindespindel
- 5 Markierung "X"
- 6 Sprengring
- 7 Ausstoßer mit Abzugsgewinde
- 8 Grundkörper
- 9 Mitnehmer
- 10 Nocke
- 11 Welle der SF-Spindel
- 12 Befestigungsspindel




Schlüsselweite (SW): 3



- Entferne den Sechskantschlüssel.
- Reinige vor dem Einsetzen der Werkzeugaufnahme in die SF-Spindel:
  - Planflächen der Werkzeugaufnahme
  - Kegel der Werkzeugaufnahme.
  - Planflächen der Welle.
  - ♥ Innenkegel der Welle.
- Verwende den Reinigungskegel aus dem Serviceset.
- Setze den Werkzeugkegel in die SF-Spindel ein.
  - Siehe Bild: Fügeposition
- → Führe den Sechskantschlüssel durch die Zugriffsbohrung in die Gewindespindel ein.
- Ziehe die Gewindespindel rechtsdrehend (im Uhrzeigersinn) mit dem Anzugsmoment M<sub>A</sub> max. an.
  - ⋄ M<sub>A</sub> max: 6 Nm
  - Siehe Bild: Spannposition



Musterabbildung: Fügeposition



Musterabbildung: Spannposition





# **GEFAHR: Durch weggeschleuderte Teile.**

Der Innensechskantschlüssel kann bei Betrieb der SF-Spindel durch die entstehenden hohen Fliehkräfte weggeschleudert werden.

- ▶ Entferne nach dem Werkzeugwechsel den Innensechskantschlüssel.
- Drehe den Verschlussring wieder zurück, bis die Zugriffsbohrung wieder verschlossen ist.

Die HSK Werkzeugaufnahme ist richtig eingesetzt, wenn sie an der Stirnfläche der Welle plan anliegt.

- Zum Entnehmen der Werkzeugaufnahme gehe in der umgekehrten Reihenfolge vor.
- → Achte beim Lösen darauf, dass die Werkzeugaufnahme spürbar aus der Welle herauskommt.



# 11 Werkzeuge zur HSC-Bearbeitung



## **GEFAHR: Durch weggeschleuderte Teile.**

Bei falscher Drehrichtung wird bei Belastung das Werkzeug beschädigt. Durch die Fliehkräfte wird das angebrochene Teilstück weggeschleudert.

► Verwende nur Werkzeuge mit der passenden Drehrichtung zur SF-Spindel.



### **GEFAHR: Durch weggeschleuderte Teile.**

Bei falsch gewählter Drehzahl können die SF-Spindel oder das Werkzeug zerstört werden und deren Bruchstücke weggeschleudert werden.

- Beachte die maximale Drehzahl für das gewählte Werkzeug.
- ▶ Beachte die maximale Drehzahl der SF-Spindel.
- ▶ Die max. zulässige Drehzahl der SF-Spindel für Inbetriebnahme / Bearbeitung ist immer die niedrigste angegebene Drehzahl.
- Nur technisch einwandfreie Werkzeuge verwenden.
- ⇒ Verwende nur Werkzeuge, bei denen der Durchmesser des Werkzeugschaftes dem Innendurchmesser der Spannzange entspricht. Setze z. B. keine Schäfte mit einem Durchmesser von 3 mm in Spannzangen für 1/8" (=3,175 mm) ein.
  - Siehe auch Kapitel Technische Daten [> 12]
- Verwende nur Werkzeugschäfte mit einer Durchmessertoleranz von h6.
- Verwende keine Werkzeugschäfte mit Spannfläche (z. B. Weldon).
- Verwende nur gewuchtetes Werkzeug.
  - UNISO 1940, Gütestufe G2,5.

32 (40) Artikel-Nr. 10206008, Revision 00



#### 12 Wartung

#### Nur Fachpersonal darf die Spindel warten.

Die SF-Spindel muss vor jeder Wartungsarbeit stillgesetzt werden.

- Stelle sicher, dass die Welle der SF-Spindel absolut stillsteht.
- ⇒ Lies vor der durchzuführenden Arbeit das zu dieser Arbeit gehörende Kapitel im Handbuch noch einmal sorgfältig durch.
- Beachte das Handbuch der Maschine, in welche die SF-Spindel eingebaut wird.
- ⇒ Beachte alle Sicherheitshinweise und Sicherheitsvorschriften.

# 12.1 Kugellager



#### Hinweis: Reduzierung der Lebensdauer durch Fremdstoffe.

Die Lager der SF-Spindel sind mit einer Lebensdauer-Fettschmierung ausgestattet. Sie sind somit wartungsfrei.

- Nicht die Kugellager schmieren.
- ► Keine Fette, Öle oder Reinigungsmittel in Öffnungen der SF-Spindel einbringen.

#### 12.2 Tägliche Reinigung

Um eine sichere und genaue Funktion der SF-Spindel zu gewährleisten, müssen alle Anlageflächen der SF-Spindel, der Aufnahme für die SF-Spindel, der Werkzeugaufnahme und des Werkzeughalters sauber sein.



#### Hinweis: Reduzierung der Lebensdauer durch Fremdstoffe.

- Verwende keine Pressluft, um die SF-Spindel zu reinigen.
- Verwende keinen Ultraschall, um die SF-Spindel zu reinigen.
- ▶ Verwende keinen Dampfstrahl, um die SF-Spindel zu reinigen.

Dabei können Verunreinigungen in den Lagerbereich eindringen.

#### 12.2.1 Vor Arbeitsbeginn

- ⇒ Überprüfe, dass alle Oberflächen gut gesäubert und frei von Staub, Fett, Kühlflüssigkeit, Bearbeitungsresten und Metallteilchen sind.
- ⇒ Überprüfe, dass die SF-Spindel keine Beschädigungen aufweist.
- ⇒ Falls die SF-Spindel mit Sperrluft ausgerüstet ist, schalte diese beim Reinigen immer ein.
- Benutze nur ein sauberes und weiches Tuch oder einen sauberen und weichen Pinsel zum Reinigen.

#### 12.2.2 Bei jedem Werkzeugwechsel

- Stelle sicher, dass Werkzeugaufnahme und Werkzeugschaft sauber sind.
  - Entferne alle evtl. anhaftende Verunreinigungen.



#### 12.2.3 Bei jedem Spannmittelwechsel

- Reinige den Innenkegel der Welle der SF-Spindel. Der Innenkegel muss frei von Spänen und Verunreinigungen sein.
- Reinige den Werkzeugkegel.
- Trage nach dem Reinigen auf den Kegel der Spannzange einen leichten Fettfilm auf.
  - Verwende nur das Zangenfett aus dem Serviceset.

Dies verbessert die Gleitfähigkeit und erhöht die Spannkraft der Spannzange.

#### 12.3 Bei Lagerung

Falls die SF-Spindel längere Zeit nicht benötigt wird:

- Reinige vor dem Einlagern und vor der Inbetriebnahme nur den Kühlkanal mit Pressluft.
- Entferne alle Kühlmittelrückstände.
- ⇒ Lagere die SF-Spindel waagerecht.
- Lagere die SF-Spindel geschützt gegen Feuchtigkeit, Staub und andere Umwelteinflüsse.
- Beachte die nachfolgenden Lagerbedingungen.

| Temperatur Lagerort  | +10° C + 45° C |
|----------------------|----------------|
| Relative Luftfeuchte | < 50 %         |

#### 12.4 Monatliche Wartung

 Drehe die Welle der SF-Spindel alle 4 Wochen mindestens 10-mal per Hand.

#### 12.5 Bei längerer Lagerung

- ⇒ Drehe die Welle der SF-Spindel alle 3 Monate mindestens 10-mal per Hand.
- Nimm die SF-Spindel anschließend mit eingelegtem Werkzeug ca. 10 Minuten lang in Betrieb.
  - Die Drehzahl beträgt dabei höchstens 20 % der max. zulässigen Drehzahl der SF-Spindel. (Siehe Kapitel Inbetriebnahme [▶ 27])

#### 12.6 Maximale Lagerzeit

Die maximale Lagerzeit beträgt 2 Jahre.

⇒ Beachte unbedingt alle Punkte aus dem Kapitel "Bei längerer Lagerung
 [▶ 34]". Nur so kann die Funktion der SF-Spindel erhalten werden.

34 ( 40 ) Artikel-Nr. 10206008, Revision 00



#### 13 Demontage

Um die SF-Spindel auszubauen, gehe wie folgt vor:

- Schalte die Energiezufuhr (Strom) vollständig ab.
- Schalte die Medienzufuhr (Luft und Flüssigkeit) vollständig ab.
- Stelle sicher, dass die Welle der SF-Spindel absolut stillsteht.
- ⇒ Entferne alle Anschlüsse von der SF-Spindel.
- Entleere den Kühlkanal der SF-Spindel.
- Baue die SF-Spindel aus der Maschine aus.

### 13.1 Entsorgung und Umweltschutz



Mehr als 90 % der verwendeten Materialien der SF-Spindel sind wiederverwertbar (Aluminium, Edelstahl, Stahl, Kupfer etc.)

#### Die SF-Spindel darf nicht im normalen Hausmüll entsorgt werden.

- ⇒ Entferne alle nicht wiederverwertbaren Materialien.
- Verschrotte die SF-Spindel in einer zugelassenen Verwertungsanlage.
- ⇒ Beachte alle Vorschriften der zuständigen Verwaltungsbehörden.
- Leite keine Kühlflüssigkeiten ins Abwasser.
- Entsorge die Kühlmedien gemäß den örtlichen Bestimmungen.

Falls eine Demontage der SF-Spindel nicht möglich ist, sende die SF-Spindel an die **Nakanishi Jaeger GmbH**. Die anfallenden Kosten für den Versand und die Gebühren für die Verwertungsanlagen werden von der **Nakanishi Jaeger GmbH** nicht übernommen.



# 14 Service & Reparatur



# **GEFAHR: Elektrischer Schlag.**

Elektrischer Schlag kann zu schweren Verbrennungen und lebensgefährlichen Verletzungen führen.

Schließe Gefährdungen durch die elektrische Energie aus (Einzelheiten siehe z. B. in den Vorschriften des VDE und der örtlichen Energieversorgungsunternehmen).

Schalte vor Beginn der Arbeit die Stromversorgung der SF-Spindel ab.



### Hinweis: Beschädigung durch elektrostatische Entladung.

Berühre nicht die elektrostatisch gefährdeten Bauelemente der SF-Spindel.

# 14.1 Servicepartner

Nur zertifizierte Servicepartner dürfen die Spindel öffnen und reparieren. Bei Missachtung erlischt jeglicher Gewährleistungs- und Schadensersatzanspruch.

**>** Entnimm die Liste der Partner nachfolgender Webseite.

https://www.nakanishi-jaeger.com/de/spindelhersteller-kontakt/spindelsysteme-partner

36 (40) Artikel-Nr. 10206008, Revision 00



# 14.2 Betriebsstörungen

Anhand der nachfolgenden Aufstellung können Störungen schnell untersucht und behoben werden.

# **SF-Spindel dreht nicht**

| Ursache                                      | Störungsbehebung                                                                                         |  |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| Keine<br>Stromversorgung                     | ☐ Prüfe den Frequenzumrichter (FU).                                                                      |  |  |  |
|                                              | ☐ Prüfe die Maschine.                                                                                    |  |  |  |
|                                              | ☐ Prüfe alle elektrischen Anschlüsse                                                                     |  |  |  |
|                                              | ☐ Prüfe alle Leitungen im Motorkabel.                                                                    |  |  |  |
|                                              | ☐ Betätige den Start/Reset-Knopf.                                                                        |  |  |  |
|                                              | ☐ Warte, bis die SF-Spindel abgekühlt ist.                                                               |  |  |  |
| Thermische Sicherheit hat sich eingeschaltet | <ul> <li>Prüfe den FU auf Fehlermeldungen. Wenn keine Meldung<br/>aufleuchtet, starte den FU.</li> </ul> |  |  |  |
|                                              | (Siehe auch "Spindel wird heiß [▶ 37]")                                                                  |  |  |  |
| FU hat sich abgeschaltet                     | ☐ Prüfe die Fehlermeldungen im Handbuch des FU.                                                          |  |  |  |

# SF-Spindel wird heiß

| Ursache                     | Störungsbehebung                                                                                 |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------|--|--|--|
|                             | ☐ Prüfe die Leistung des Kühlgerätes.                                                            |  |  |  |
|                             | ☐ Prüfe den Wasserstand des Kühlgerätes.                                                         |  |  |  |
| Kühlung reicht nicht<br>aus | ☐ Prüfe die Anschlüsse und die Kühlschläuche.                                                    |  |  |  |
|                             | ☐ Prüfe den Kühlkreislauf.                                                                       |  |  |  |
|                             | Prüfe das Kühlgerät auf Fehlermeldungen.                                                         |  |  |  |
| Phase fehlt                 | Prüfe alle Leitungen im Motorkabel auf Kabelbruch.                                               |  |  |  |
| Bearbeitung zu stark        | ☐ Prüfe die Drehrichtung der SF-Spindel.                                                         |  |  |  |
|                             | ☐ Prüfe die Drehrichtung des Werkzeuges.                                                         |  |  |  |
|                             | ☐ Prüfe das Werkzeug auf Beschädigung.                                                           |  |  |  |
|                             | ☐ Reduziere die Lastintensität der Bearbeitung.                                                  |  |  |  |
| FU falsch eingestellt       | <ul> <li>Vergleiche die Werte der SF-Spindel mit den eingestellten<br/>Werten des FU.</li> </ul> |  |  |  |

# **SF-Spindel wird laut**

| Ursache                                               | Störungsbehebung                                                                                                                                                                                                             |  |  |  |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Werkzeug ungeeignet                                   | <ul> <li>□ Verwende nur gewuchtete Werkzeuge.</li> <li>(Siehe auch Kapitel "Werkzeuge zur HSC-Bearbeitung [▶ 32]".)</li> <li>□ Prüfe das Werkzeug auf Beschädigung.</li> <li>□ Tausche beschädigtes Werkzeug aus.</li> </ul> |  |  |  |
| SF-Spindel nicht rund<br>gespannt oder ver-<br>spannt | <ul> <li>Verwende nur Spindelträger aus dem Originalzubehör<br/>oder Spindelträger, die nach den Toleranzangaben der Na-<br/>kanishi Jaeger GmbH gefertigt sind.</li> </ul>                                                  |  |  |  |
| SF-Spindel zu fest ge-<br>klemmt                      | <ul> <li>Ziehe die Klemmschrauben des Spindelträgers nur manuell fest.</li> <li>Verwende keine technischen Hilfsmittel zum Klemmen der SF-Spindel.</li> </ul>                                                                |  |  |  |
| Lager beschädigt                                      | ☐ Kontaktiere den Service der Nakanishi Jaeger GmbH.                                                                                                                                                                         |  |  |  |



# Service & Reparatur

#### **Sensor liefert kein Signal**

| Ursache                        | Störungsbehebung                          |  |
|--------------------------------|-------------------------------------------|--|
| Keine Verbindung zum<br>Sensor | ☐ Prüfe die Leitungen und die Anschlüsse. |  |

# SF-Spindel vibriert / schwingt

| Ursache                      | Störungsbehebung                                                                                        |
|------------------------------|---------------------------------------------------------------------------------------------------------|
| Werkzeug ungeeignet          | ☐ Verwende nur gewuchtete Werkzeuge.                                                                    |
|                              | (Siehe auch Kapitel "Werkzeuge zur HSC-Bearbeitung [▶ 32]".)                                            |
|                              | ☐ Prüfe, ob das Werkzeug für die Anwendung geeignet ist.                                                |
|                              | Prüfe das Werkzeug auf Beschädigung.                                                                    |
|                              | ☐ Tausche beschädigtes Werkzeug aus.                                                                    |
| Verunreinigung               | <ul> <li>Entferne alle Verunreinigungen zwischen Werkzeugkegel<br/>und Welle der SF-Spindel.</li> </ul> |
|                              | (Beachte alle Punkte in den Kapiteln "Werkzeugwechsel [▶ 29]" und "Wartung [▶ 33]".)                    |
| FU falsch eingestellt        | ☐ Vergleiche die Werte der SF-Spindel mit den eingestellten Werten des FU.                              |
| Bearbeitung zu stark         | ☐ Reduziere die Lastintensität der Bearbeitung.                                                         |
| Befestigungsschrauben locker | ☐ Ziehe die Schrauben fest an.                                                                          |
| SF-Spindel beschädigt        | ☐ Kontaktiere den Service der <b>Nakanishi Jaeger GmbH</b> .                                            |

Wenn nach Prüfung aller Punkte die Störung nicht behoben ist, kontaktiere den zuständigen Servicepartner.

- > Fordere den Reparaturbegleitschein beim Servicepartner an.
- ⇒ Überprüfe das Handbuch der Maschine.
- Sontaktiere den Hersteller der Maschine.

38 (40) Artikel-Nr. 10206008, Revision 00



## 15 Einbauerklärung

Im Sinne der EG-Richtlinie Maschinen

Die Sicherheitshinweise der Makanishi Jaeger GmbH mitgelieferten Produktdoku-

mentation sind zu beachten.

Siemensstr. 8

D-61239 Ober-Mörlen

Tel. +49 (0) 60029123 -0

SF-Elektromaschinenbau

erklärt hiermit, dass folgendes Produkt,

| Produkt    | Schnellfrequenzspindel            |
|------------|-----------------------------------|
| Тур        | Z100-M618.03 S5                   |
| Serien-Nr. | Siehe letzte Seite des Handbuches |

soweit es vom Lieferumfang her möglich ist, den grundlegenden Anforderungen der Maschinenrichtlinie 2006/42/EG entspricht.

Abschnitte, der Maschinenrichtlinie, die angewendet wurden: 1.1.1; 1.1.2; 1.1.5; 1.3.2; 1.3.4; 1.5.1; 1.5.2; 1.5.4; 1.5.5; 1.5.6; 1.5.8; 1.5.9; 1.6.4; 1.6.5; 1.7.1; 1.7.1.1; 1.7.2; 1.7.3; 1.7.4;

Die Unvollständige Maschine entspricht in ihrer Serienmäßigen Ausführung weiterhin allen Bestimmungen der Richtlinien:

| Angewendete harmonicierte Norman | DIN EN ISO 12100         |  |
|----------------------------------|--------------------------|--|
| Angewendete harmonisierte Normen | Sicherheit von Maschinen |  |

Die unvollständige Maschine darf erst dann in Betrieb genommen werden, wenn festgestellt wurde, dass die Maschine, in die die unvollständige Maschine eingebaut werden soll, den Bestimmungen der Maschinenrichtlinie 2006/42/EG und ggf. anderen anzuwendenden Vorschriften entspricht.

Wir, Nakanishi Jaeger GmbH, verpflichten uns, die speziellen Unterlagen zur unvollständigen Maschine einzelstaatlichen Stellen auf Verlangen zu übermitteln.

Die zur Maschine gehörenden speziellen technischen Unterlagen nach Anhang VII Teil B wurden erstellt.

Person, die bevollmächtigt ist, die Unterlagen nach Anhang VII Teil B zusammenzustellen:

#### **Nakanishi Jaeger GmbH**

Ober-Mörlen, 01.09.2023



# Nakanishi Jaeger YouTube channel

Scanne diesen QR-Code mit einem beliebigen QR-Code Scanner.



# Nakanishi Jaeger GmbH

Siemensstraße 8 61239 Ober-Mörlen **GERMANY** 

**\*** +49 (0)6002-9123-0

 $\boxtimes$  sales@nakanishi-jaeger.com

www.nakanishi-jaeger.com

| c - | <b>ui</b> a | n- | NI |    |
|-----|-------------|----|----|----|
| 36  | rie         | n- | IV | r. |

Тур Z100-M618.03 S5

Artikel-Nr. 10206008

Revision 00 Datum 01.09.2023

Sprache DE

